9 research outputs found

    Novel Offline Switched Mode Power Supplies for Solid State Lighting Applications

    Get PDF
    In recent years, high brightness light emitting diodes (HBLEDs) have increasingly attracted the interest of both industrial manufacturers and academic research community. Among the several aspects that make LED technology so attractive, the most appreciated characteristics are related to their robustness, high efficiency, small size, easy dimming capability, long lifetime, very short switch-on/switch-off times and mercury free manufacturing. Even if all such qualities would seem to give to solid state lighting a clear advantage over all the other kinds of competing technologies, the issues deriving from the need of LED technology improvement, on one hand, and of the development of suitable electronic ballasts to properly drive such solid state light sources, on the other, have so far hindered the expected practical applications. The latter problem, in particular, is nowadays considered the main bottleneck in view of a widespread diffusion of solid state technology in the general lighting market, as a suitable replacement of the still dominant solutions, namely halogen and fluorescent lamps. In fact, if it is true that some aspects of the devices’ technology (e.g. temperature dependent performance, light quality, efficiency droop, high price per lumen, etc…) still need further improvements, it is now generally recognized that one of the key requirements, for a large scale spread of solid state lighting, is the optimization of the driver. In particular, the most important specifications for a LED lamp ballast are: high reliability and efficiency, high power factor, output current regulation, dimming capability, low cost and volume minimization (especially in domestic general lighting applications). From this standpoint, the main goal is, therefore, to find out simple switched mode power converter topologies, characterized by reduced component count and low current/voltage stresses, that avoid the use of short lifetime devices like electrolytic capacitors. Moreover, if compactness is a major issue, also soft switching capability becomes mandatory, in order to enable volume minimization of the reactive components by increasing the switching frequency in the range of the hundreds of kHz without significantly affecting converter’s efficiency. It is worth mentioning that, in order to optimize HBLED operation, also other matters, like the lamp thermal management concern, should be properly addressed in order to minimize the stress suffered by the light emitting devices and, consequently, the deterioration of the light quality and of the expected lamp lifetime. However, being this work focused on the issues related to the research of innovative driving solutions, the aforementioned thermal management problems, as also all the topics related to the improvement of solid state devices’ technology, will be left aside. The main goal of the work presented in this thesis is, indeed, to find out, analyze and optimize new suitable topologies, capable of matching the previously described specifications and also of successfully facing the many challenges dictated by the future of general lighting. First of all, a general overview of solid state lighting features, of the state of the art of lighting market and of the main LED driving issues will be provided. After this first introduction, the offline driving concern will be extensively discussed and different ways of approaching the problem, depending on the specific application considered, will be described. The first kind of approach investigated is based on the use of a simple structure relying on a single power conversion stage, capable of concurrently ensuring: compliance with the standards limiting the input current harmonics, regulation of the load current and also galvanic isolation. The constraints deriving from the need to fulfil the EN 61000-3-2 harmonics standard requirements, when using such kind of solution for low power (<15W) LED driving purposes, will be extensively discussed. A low cost, low component count, high switching frequency converter, based on the asymmetrical half bridge flyback topology, has been studied, developed and optimized. The simplicity and high compactness, characterizing this solution, make it a very good option for CFL and bulb replacement applications, in which volume minimization is mandatory in order to reach the goal of placing the whole driving circuitry in the standard E27 sockets. The analysis performed will be presented, together with the design procedure, the simulation outcomes and the different control and optimization techniques that were studied, implemented and tested on the converter's laboratory prototype. Another interesting approach, that will be considered, is based on the use of integrated topologies in which two different power conversion stages are merged by sharing the same power switch and control circuitry. In the resulting converter, power factor correction and LED current regulation are thus performed by two combined semi-stages in which both the input power and the output current have to be managed by the same shared switch. Compared with a conventional two-stages configuration, lower circuit complexity and cost, reduced component count and higher compactness can be achieved through integration, at cost of increased stress levels on the power switch and of losing a degree of freedom in converter design. Galvanic isolation can be provided or not depending on the topologies selected for integration. If non-isolated topologies are considered for both semi-stages, the user safety has to be guaranteed by assuring mechanical isolation throughout the LED lamp case. The issue, deriving from the need of smoothing the pulsating power absorbed from the line while avoiding the use of short lifetime electrolytic capacitors, will be addressed. A set of integrated topologies, used as HBLED lamp power supplies, will be investigated and a generalized analysis will be presented. Their input line voltage ripple attenuation capability will be examined and a general design procedure will be described. Moreover, a novel integrated solution, based on the use of a double buck converter, for an about 15W rated down-lighting application will be presented. The analysis performed, together with converter design and power factor correction concerns will be carefully discussed and the main outcomes of the tests performed at simulation level will be provided. The last kind of approach to be discussed is based on a multi-stage structure that results to be a suitable option for medium power applications, like street lighting, in which compactness is not a major concern. By adopting such kind of solution it is, indeed, possible to optimize converter’s behavior both on line and on load side, thereby guaranteeing both an effective power factor correction at the input and proper current regulation and dimming capability at the output. Galvanic isolation can be provided either by the input or the output stage, resulting in a standard two stage configuration, or by an additional intermediate isolated DC-DC stage (operating in open loop with a constant input/output voltage conversion ratio) that namely turns the AC/DC converter topology into a three stage configuration. The efficiency issue, deriving from the need of multiple energy processing along the path between the utility grid and the LED load, can be effectively addressed thanks to the high flexibility guaranteed by this structure that, relaxing the design constraint, allows to easily optimize each stage. A 150W nominal power rated ballast for street solid state lighting applications, based on the latter (three stage) topology, has been investigated. The analysis performed, the design procedure and the simulations outcomes will be carefully described, as well as the experimental results of the tests made on the implemented laboratory prototype

    Novel Offline Switched Mode Power Supplies for Solid State Lighting Applications

    Get PDF
    In recent years, high brightness light emitting diodes (HBLEDs) have increasingly attracted the interest of both industrial manufacturers and academic research community. Among the several aspects that make LED technology so attractive, the most appreciated characteristics are related to their robustness, high efficiency, small size, easy dimming capability, long lifetime, very short switch-on/switch-off times and mercury free manufacturing. Even if all such qualities would seem to give to solid state lighting a clear advantage over all the other kinds of competing technologies, the issues deriving from the need of LED technology improvement, on one hand, and of the development of suitable electronic ballasts to properly drive such solid state light sources, on the other, have so far hindered the expected practical applications. The latter problem, in particular, is nowadays considered the main bottleneck in view of a widespread diffusion of solid state technology in the general lighting market, as a suitable replacement of the still dominant solutions, namely halogen and fluorescent lamps. In fact, if it is true that some aspects of the devices’ technology (e.g. temperature dependent performance, light quality, efficiency droop, high price per lumen, etc…) still need further improvements, it is now generally recognized that one of the key requirements, for a large scale spread of solid state lighting, is the optimization of the driver. In particular, the most important specifications for a LED lamp ballast are: high reliability and efficiency, high power factor, output current regulation, dimming capability, low cost and volume minimization (especially in domestic general lighting applications). From this standpoint, the main goal is, therefore, to find out simple switched mode power converter topologies, characterized by reduced component count and low current/voltage stresses, that avoid the use of short lifetime devices like electrolytic capacitors. Moreover, if compactness is a major issue, also soft switching capability becomes mandatory, in order to enable volume minimization of the reactive components by increasing the switching frequency in the range of the hundreds of kHz without significantly affecting converter’s efficiency. It is worth mentioning that, in order to optimize HBLED operation, also other matters, like the lamp thermal management concern, should be properly addressed in order to minimize the stress suffered by the light emitting devices and, consequently, the deterioration of the light quality and of the expected lamp lifetime. However, being this work focused on the issues related to the research of innovative driving solutions, the aforementioned thermal management problems, as also all the topics related to the improvement of solid state devices’ technology, will be left aside. The main goal of the work presented in this thesis is, indeed, to find out, analyze and optimize new suitable topologies, capable of matching the previously described specifications and also of successfully facing the many challenges dictated by the future of general lighting. First of all, a general overview of solid state lighting features, of the state of the art of lighting market and of the main LED driving issues will be provided. After this first introduction, the offline driving concern will be extensively discussed and different ways of approaching the problem, depending on the specific application considered, will be described. The first kind of approach investigated is based on the use of a simple structure relying on a single power conversion stage, capable of concurrently ensuring: compliance with the standards limiting the input current harmonics, regulation of the load current and also galvanic isolation. The constraints deriving from the need to fulfil the EN 61000-3-2 harmonics standard requirements, when using such kind of solution for low power (<15W) LED driving purposes, will be extensively discussed. A low cost, low component count, high switching frequency converter, based on the asymmetrical half bridge flyback topology, has been studied, developed and optimized. The simplicity and high compactness, characterizing this solution, make it a very good option for CFL and bulb replacement applications, in which volume minimization is mandatory in order to reach the goal of placing the whole driving circuitry in the standard E27 sockets. The analysis performed will be presented, together with the design procedure, the simulation outcomes and the different control and optimization techniques that were studied, implemented and tested on the converter's laboratory prototype. Another interesting approach, that will be considered, is based on the use of integrated topologies in which two different power conversion stages are merged by sharing the same power switch and control circuitry. In the resulting converter, power factor correction and LED current regulation are thus performed by two combined semi-stages in which both the input power and the output current have to be managed by the same shared switch. Compared with a conventional two-stages configuration, lower circuit complexity and cost, reduced component count and higher compactness can be achieved through integration, at cost of increased stress levels on the power switch and of losing a degree of freedom in converter design. Galvanic isolation can be provided or not depending on the topologies selected for integration. If non-isolated topologies are considered for both semi-stages, the user safety has to be guaranteed by assuring mechanical isolation throughout the LED lamp case. The issue, deriving from the need of smoothing the pulsating power absorbed from the line while avoiding the use of short lifetime electrolytic capacitors, will be addressed. A set of integrated topologies, used as HBLED lamp power supplies, will be investigated and a generalized analysis will be presented. Their input line voltage ripple attenuation capability will be examined and a general design procedure will be described. Moreover, a novel integrated solution, based on the use of a double buck converter, for an about 15W rated down-lighting application will be presented. The analysis performed, together with converter design and power factor correction concerns will be carefully discussed and the main outcomes of the tests performed at simulation level will be provided. The last kind of approach to be discussed is based on a multi-stage structure that results to be a suitable option for medium power applications, like street lighting, in which compactness is not a major concern. By adopting such kind of solution it is, indeed, possible to optimize converter’s behavior both on line and on load side, thereby guaranteeing both an effective power factor correction at the input and proper current regulation and dimming capability at the output. Galvanic isolation can be provided either by the input or the output stage, resulting in a standard two stage configuration, or by an additional intermediate isolated DC-DC stage (operating in open loop with a constant input/output voltage conversion ratio) that namely turns the AC/DC converter topology into a three stage configuration. The efficiency issue, deriving from the need of multiple energy processing along the path between the utility grid and the LED load, can be effectively addressed thanks to the high flexibility guaranteed by this structure that, relaxing the design constraint, allows to easily optimize each stage. A 150W nominal power rated ballast for street solid state lighting applications, based on the latter (three stage) topology, has been investigated. The analysis performed, the design procedure and the simulations outcomes will be carefully described, as well as the experimental results of the tests made on the implemented laboratory prototype.Negli ultimi anni i dispositivi LED di potenza ad elevata luminosità (HBLED) hanno attirato in misura sempre crescente l'interesse della comunità scientifica, sia all'interno del mondo accademico che di quello industriale. Tra le varie caratteristiche, che rendono questo tipo di tecnologia interessante, le qualità più apprezzate sono certamente: la robustezza, l'elevata efficienza, le piccole dimensioni, la facilità di modulazione dell'intensità luminosa, il lungo tempo di vita, l'estrema rapidità di accensione e spegnimento e l'assenza di mercurio. Nonostante tutti questi aspetti sembrino dare alla tecnologia a stato solido un netto vantaggio rispetto alle tecnologie concorrenti, l'utilizzo dei LED di potenza nel campo dell'illuminazione rimane a tutt'oggi abbastanza limitato. La necessità di ulteriori progressi nella tecnologia dei dispositivi, da un lato, e dello sviluppo di soluzioni in grado di garantirne il corretto ed efficiente pilotaggio, dall'altro, ne hanno, infatti, fino ad ora frenato la diffusione rispetto alle attese. Quest'ultimo aspetto, in particolare, è al giorno d'oggi considerata il vero "collo di bottiglia" in vista dell'impiego su larga scala della tecnologia a stato solido, in sostituzione delle soluzioni, tutt'ora dominanti nel mercato dell'illuminazione, basate sull'utilizzo di lampade alogene e a fluorescenza. Se, da un lato, infatti, è vero che alcuni aspetti della tecnologia dei dispositivi (e.g. variabilità delle prestazioni con la temperatura, qualità della luce, calo dell'efficienza luminosa con l'aumentare della corrente, elevato costo per lumen, ecc...) necessitano di essere ulteriormente perfezionati, dall'altro è ormai universalmente riconosciuto che l'elemento chiave per l'ampia diffusione dell'illuminazione a stato solido è proprio l'ottimizzazione dello stadio di alimentazione. In particolare, le specifiche più importati che un ballast per lampade a LED è tenuto a soddisfare sono: elevata affidabilità ed efficienza, elevato fattore di potenza, capacità di regolazione della corrente di uscita e di modulazione del flusso luminoso, basso costo e minimo ingombro (soprattutto nell'illuminazione domestica). L'obiettivo principale è, quindi, riuscire ad ideare soluzioni basate sull'utilizzo di topologie semplici, caratterizzate da ridotto numero di componenti e limitati livelli di stress di corrente e tensione, che non prevedano l'impiego di componenti con breve tempo di vita come i condensatori elettrolitici. Inoltre, nelle applicazioni in cui la compattezza è considerata uno degli aspetti di maggior rilievo, anche la capacità di operare in soft-switching diviene una specifica indispensabile. Ciò è infatti necessario al fine di permettere la minimizzazione del volume delle componenti reattive, tramite l'aumento della frequenza di commutazione nel range delle centinaia di kHz, senza compromettere l'efficienza del convertitore. Per completezza, vale la pena di ricordare che, per ottimizzare il funzionamento dei LED ad elevata luminosità, andrebbero presi in considerazione anche altri aspetti, come ad esempio le problematiche legate alla gestione del calore dissipato dalla lampada, importanti al fine di limitare gli stress termici subiti dai dispositivi e, di conseguenza, migliorare la qualità della luce emessa e massimizzare il tempo di vita della lampada. Tuttavia, essendo il lavoro presentato in questa tesi centrato sulle questioni relative allo stadio di alimentazione, i suddetti problemi di gestione termica, come anche gli aspetti relativi allo sviluppo della tecnologia dei dispositivi non verranno esaminati. L'obiettivo principale del lavoro che verrà descritto nel corso dei prossimi capitoli, è, infatti, la ricerca di soluzioni innovative per il pilotaggio da rete elettrica di lampade basate su tecnologia a stato solido. Verranno pertanto approfonditamente trattate le tematiche relative ad analisi, ottimizzazione e sviluppo di topologie che siano in grado di soddisfare i requisiti precedentemente enunciati e di affrontare con successo le sfide proposte dalla continua evoluzione dello scenario del "general lighting". Per prima cosa, sarà fornita una visione di insieme riguardante lo stato dell'arte del mercato dell'illuminazione, le caratteristiche dei dispositivi di illuminazione a stato solido ed i principali aspetti relativi al loro pilotaggio. Dopo questa prima sezione introduttiva, la tematica relativa all'alimentazione da rete elettrica di tali dispositivi verrà approfonditamente discussa. Differenti modi di approcciare il problema, a seconda della specifica applicazione considerata, verranno discussi. Il primo tipo di approccio che verrà esaminato si basa sull'uso di una semplice struttura, formata da un singolo stadio di conversione di potenza. Essa è in grado di fornire al contempo il rispetto degli standard che limitano il contenuto armonico della corrente di ingresso, l'isolamento galvanico e la regolazione della corrente e dell'intensità luminosa in uscita. I vincoli, dettati dall'esigenza di garantire il rispetto della normativa EN 61000-3-2, in applicazioni di bassa potenza (<15W) prive di uno stadio dedicato alla correzione del fattore di potenza, verranno approfonditamente trattati. Saranno, poi, illustrati i risultati dello studio, sviluppo ed ottimizzazione di un convertitore a singolo stadio, operante ad elevata frequenza di commutazione, basato sulla topologia flyback a mezzo ponte asimmetrico. La semplicità, il ridotto numero di componenti ed il basso costo, che caratterizzano tale tipo di soluzione, la rendono adatta all'alimentazione di lampade per il settore residenziale, in cui la compattezza dello stadio di alimentazione è di fondamentale importanza al fine di consentirne l'alloggiamento nei classici socket E27. L'analisi effettuata, la procedura di progetto ed risultati ottenuti in simulazione ed a livello sperimentale durante lo studio di tale topologia verranno accuratamente descritti e discussi. Un altro interessante tipo di approccio che verrà considerato si basa sull'utilizzo di topologie integrate, nelle quali due diversi stadi di conversione vengono uniti tramite la condivisione dello stesso interruttore di potenza e della relativa circuiteria di comando. Nel convertitore che ne risulta, la correzione del fattore di potenza e la regolazione della corrente nei LED saranno dunque garantite dalla combinazione dei due semi-stadi, il cui interruttore comune dovrà essere in grado di gestire sia la potenza di ingresso che la corrente di uscita. Rispetto alla configurazione a due stadi convenzionale, la soluzione ottenuta tramite l'integrazione consente una minore complessità circuitale, un ridotto numero di componenti e, di conseguenza, una maggiore compattezza ed un minor costo. Tutto ciò viene guadagnato a scapito di un maggiore livello di stress nei componenti e della perdita di un grado di libertà nel progetto del convertitore. L'isolamento galvanico può essere garantito o meno a seconda del tipo di topologie che vengono selezionate per l'integrazione. Se la scelta ricade su topologie non isolate, la sicurezza dell'utente andrà comunque garantita isolando meccanicamente l'involucro della lampada. I problemi legati alla necessità di smorzare la componente alternata della potenza assorbita dalla rete, evitando al contempo l'utilizzo di componenti con basso tempo di vita, come i condensatori elettrolitici, verranno discussi. A tal proposito si studieranno le caratteristiche di un insieme di topologie integrate, al fine di fornirne un'analisi ed una procedura di design generalizzate. Se ne esaminerà, inoltre, la capacità di attenuare la componente ondulatoria della tensione di ingresso che viene trasferita al carico, dove si traduce in un'oscillazione della corrente di alimentazione fornita ai LED. Verrà proposta, poi, una soluzione basata su una topologia derivante dall'integrazione di due convertitori di tipo step-down (abbassatori di tensione), per applicazioni di "down-lighting", dimensionata per una potenza di circa 15W. Se ne discuteranno, in particolare, i dettagli di maggiore interesse relativi all'analisi effettuata, alla procedura di progetto ed ai risultati dei test effettuati in ambiente di simulazione. L'ultimo tipo di approccio considerato prevede, infine, l'utilizzo di una topologia multi-stadio, ritenuta una scelta appropriata soprattutto per applicazioni lighting di potenza elevata (>60W), come l'illuminazione stradale, in cui la compattezza dell'alimentatore non è ritenuta un aspetto di primaria importanza. Tramite questo tipo di soluzione è, infatti, possibile ottimizzare le prestazioni del convertitore sia dal lato della rete che dal lato del carico. Si riescono a garantire, in tal modo, un'efficace correzione del fattore di potenza, un adeguato controllo della corrente di uscita ed un'appropriata modulazione del flusso luminoso emesso dalla lampada. L'isolamento galvanico può essere fornito dallo stadio di ingresso o da quello di uscita o da un aggiuntivo stadio DC-DC intermedio, operante a catena aperta con rapporto di conversione di tensione costante. In quest'ultimo caso la struttura del convertitore, si trasforma, dalla classica configurazione a due stadi, in una topologia a triplo stadio. Il problema che nasce dalla necessità di assicurare un elevato livello di efficienza del sistema, nonostante l'interposizione di ripetuti stadi di conversione dell'energia tra la rete ed il carico a LED, può essere efficacemente risolto grazie alla flessibilità che caratterizza tale tipo di struttura. L'aumento del numero dei gradi di libertà in fase progettuale permette, infatti, di ottimizzare con semplicità ogni singolo stadio. Per comprovare limiti e potenzialità di tale tipo di approccio, si è deciso di studiare un ballast (dimensionato per una potenza nominale di 150W) basato sulla topologia a triplo stadio precedentemente menzionata, per applicazioni nell'ambito dell'illuminazione stradale. L'analisi condotta, la procedura di progetto ed i risultati delle simulazioni effettuate verranno discussi nel dettaglio, così come i risultati sperimentali dei test di laboratorio effettuati sul prototipo costruito

    A High Efficiency and High Power Factor Offline Converter for Solid State Street Lighting Applications

    No full text
    A high power factor, high efficiency offline driver for LED lighting applications is presented in this paper. Among all the suitable candidate topologies, a multiple stage structure has been chosen, to guarantee the greatest possible flexibility, thanks to the use of optimized topologies both on line side and on load side. Galvanic isolation is provided by means of an intermediate DC transformer stage. A comparison between two different implementations of the latter has been performed in order to better understand advantages and disadvantages of the two proposed topologies and find out an optimal configuration. Despite the presence of multi-stage conversion, a high (>90%) overall efficiency is achieved. Analytical and experimental results are provided

    Use of Current Controlled Mutual Inductor to Limit Recycling Current in the AHB-Flyback Converter

    No full text
    Owing to its low component count and easy scalability towards high frequency operation, the Asymmetrical Half Bridge (AHB) Flyback converter is considered one of the most attractive solutions in compact offline, low power and low cost LED driving applications. Such converter can be properly designed to operate with a significant input voltage ripple so as to minimize the input filter capacitance and to guarantee the compliance with the EN 61000-3-2 standard without any kind of power factor correction (PFC). However, despite its inherent simplicity, this converter suffers the high primary side recycling current due to the need of guaranteeing the zero voltage commutation of the half bridge switches in the whole line half period. This paper presents a solution to this problem based on the idea of modulating the mutual inductor magnetizing inductance to compensate for the DC-link voltage variation at twice the line frequency. The aim is to keep, through the use of a current controlled variable inductance, the magnetizing current peak to peak ripple constantly equal to the minimum necessary to guarantee Zero Voltage Switching (ZVS) operation. A prototype, to drive, from the European line voltage (230VRMS at 50Hz) a 10W LED lamp, has been built and tested in order to verify the effectiveness of the proposed technique and converter performance. Experimental results are provided

    A Novel Double Integrated Buck Offline Power Supply for Solid State Lighting Applications

    No full text
    A single stage offline power supply for LED lighting applications, based on the integration of a buck PFC and a tapped buck DC/DC converter, is presented in this paper. Besides the high step-down capability and the output current regulation, the proposed topology effectively provides power factor correction, so as to comply with the harmonic injection and energy saving standards EN 61000-3-2 and Energy Star. The low BUS voltage level, resulting from the use of an input step-down PFC stage, actually allows the use of film technology capacitors, instead of short lifetime electrolytic capacitors, to filter the BUS voltage and reduce the LED current ripple component at twice the line frequency. Thanks to the high reliability, the simple structure, the good line side spectral performance and the low component count, the proposed topology effectively results to be very suitable for medium power solid state lighting applications, as in the case of LED down-lighting. The issues related to the operation of the presented solution and to its design optimization will be carefully discussed. A prototype of the proposed AC/DC converter has been built and tested. The main experimental results will be described

    Efficiency Analysis of an Isolated High Voltage Gain Converter Operating in Resonant and Non-Resonant Mode

    No full text
    This paper presents an efficiency investigation of an isolated high step-up ratio dc-dc converter aimed to be used for energy processing from low-voltage high-current energy sources, like batteries, photovoltaic modules or fuel-cells. The considered converter consists of an interleaved active clamp flyback topology combined with a voltage multiplier at the transformer secondary side capable of two different operating modes, i.e. resonant and non-resonant according to the design of the output capacitors. The main goal of this paper is to compare these two operating modes from the component losses point of view with the aim of maximize the overall converter efficiency. The approach is based on losses prediction using steady-state theoretical models (designed in Mathcad environment), taking into account both conduction and switching losses. The models are compared with steady-state simulations and experimental results considering different operating modes to validate the approach

    Efficiency analysis of an isolated high voltage gain converter operating in resonant and non-resonant mode

    No full text
    This paper presents an efficiency investigation of an isolated high step-up ratio dc-dc converter aimed to be used for energy processing from low-voltage high-current energy sources, like batteries, photovoltaic modules or fuel-cells. The considered converter consists of an interleaved active clamp flyback topology combined with a voltage multiplier at the transformer secondary side capable of two different operating modes, i.e. resonant and non-resonant according to the design of the output capacitors. The main goal of this paper is to compare these two operating modes from the component losses point of view with the aim of maximize the overall converter efficiency. The approach is based on losses prediction using steady-state theoretical models (designed in Mathcad environment), taking into account both conduction and switching losses. The models are compared with steady-state simulations and experimental results considering different operating modes to validate the approach. © 2012 IEEE

    Small-Signal Modeling of the Interleaved Boost with Voltage Multiplier

    No full text
    High step-up ratio DC-DC converters for lowvoltage high-current energy sources are nowadays the focus of an intensive research activity, thanks to the increasing interest for renewable energy sources like those based on photovoltaic panels and fuel-cells. One class of these high gain converter topologies combines a boost input stage with a voltage multiplier cell, to step-up the output voltage beyond the boost capability. The aim of this paper is to derive the small-signal model of the Interleaved Boost with Voltage Multiplier (IBVM), whose operation was described in [18]-[19]. The classical state-space averaging approach has been employed together with considerations on waveform symmetry. A reduced order model is also derived showing that, with ideal lossless components, the control-to-output voltage dynamics is identical to that of a standard boost converter having twice the inductance. The derived model is validated by simulations and by experimental measurements taken on a 1kW rated converter prototype that boosts a 24V battery voltage to 400V

    Minimum loss control of low-voltage residential microgrids

    No full text
    Cooperative control of distributed energy resources can improve dramatically the operation of residential microgrids, in terms of voltage stability, distribution efficiency and power quality, while allowing cost-effective management and sharing of energy resources among prosumers (electric customers which produce and consume energy). This paper describes an optimum control technique which provides the above features and can be implemented in low-voltage microgrids by making use of a distributed ICT infrastructure of limited complexity and narrowband communication capability
    corecore